
Regular subalgebras of affine Kac–Moody algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 365204

(http://iopscience.iop.org/1751-8121/41/36/365204)

Download details:

IP Address: 171.66.16.150

The article was downloaded on 03/06/2010 at 07:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/36
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 365204 (16pp) doi:10.1088/1751-8113/41/36/365204

Regular subalgebras of affine Kac–Moody algebras

Anna Felikson1,3, Alexander Retakh2 and Pavel Tumarkin1,4

1 Independent University of Moscow, B Vlassievskii 11, 119002 Moscow, Russia
2 Department of Mathematics, Stony Brook University, Stony Brook, NY 11790, USA

E-mail: felikson@mccme.ru, retakh@math.sunysb.edu and pasha@mccme.ru

Received 12 March 2008, in final form 13 June 2008
Published 30 July 2008
Online at stacks.iop.org/JPhysA/41/365204

Abstract
We classify regular subalgebras of Kac–Moody algebras in terms of their root
systems. In the process, we establish that a root system of a subalgebra is always
an intersection of the root system of the algebra with a sublattice of its root
lattice. We also discuss applications to investigations of regular subalgebras
of hyperbolic Kac–Moody algebras and conformally invariant subalgebras of
affine Kac–Moody algebras. In particular, we provide explicit formulae for
determining all Virasoro charges in coset constructions that involve regular
subalgebras.

PACS numbers: 02.20.Sv, 03.65.Fd
Mathematics Subject Classification: 17B67, 81R10

1. Introduction

The main goal of this paper is to give a complete description of a large class of subalgebras of
affine Kac–Moody algebras.

Recall that both untwisted and twisted Kac–Moody algebras afford a uniform description
in terms of a combinatorial datum: roughly speaking, an algebra g is formed by a Cartan
subalgebra h and root subspaces indexed by a discrete set �, called a root system. Our focus
is on subalgebras whose root systems agree with that of g.

More precisely, consider a Kac–Moody algebra g. A subalgebra g1 ⊂ g is called regular
if g1 is invariant with respect to some Cartan subalgebra h of g. In other words, g1 is a direct
sum of a subspace of h and subspaces of root spaces of g (with respect to h). In terms of root
systems, g1 is regular if its root system �1 is a specific subset of a root system � of g.

Our main result is the complete classification of regular affine subalgebras in both the
untwisted and twisted case, see theorems 5.3, 5.6 and 5.8. We also describe a procedure
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Fribourg, Switzerland.
4 Present address: Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA.

1751-8113/08/365204+16$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/36/365204
mailto:felikson@mccme.ru
mailto:retakh@math.sunysb.edu
mailto:pasha@mccme.ru
http://stacks.iop.org/JPhysA/41/365204


J. Phys. A: Math. Theor. 41 (2008) 365204 A Felikson et al

for listing all regular subalgebras of affine Kac–Moody algebras. As a by-product, we
give a classification of those regular subalgebras of hyperbolic Kac–Moody algebras whose
generalized Cartan matrices are positive definite or semidefinite.

Our starting point is the classification of affine Kac–Moody algebras presented in
[9, tables Aff 1–Aff 3] in terms of sets of simple roots of affine root systems. For basic
facts concerning Kac–Moody algebras, we also refer the reader to [9]. In particular, we make
use of the detailed description of affine root systems in [9, proposition 6.3].

Another important tool is the consideration of regular subalgebras from a geometric point
of view. If g1 ⊂ g is a regular subalgebra, then the natural embedding of respective root systems
�1 ⊂ � induces a natural embedding of the corresponding Weyl groups W1 ⊂ W . Weyl
groups of affine Kac–Moody algebras are exactly affine reflection groups or, in other words,
discrete groups of isometries of a Euclidean space generated by reflections [9, proposition
3.13]. The relation with Weyl groups allows us, in turn, to use the results of [4], where all
reflection subgroups of affine reflection groups were classified.

Subalgebras of Kac–Moody algebras appear in various contexts. In particular, just as
an untwisted affine Kac–Moody algebra gives rise to a family of representations of the
Virasoro algebra V ir (via the Sugawara construction), every pair subalgebra/algebra also
gives rise to a family of representations of V ir . This is known as the coset construction. Its
applications include, for example, the explicit construction of all irreducible unitary highest
weight representations of V ir with charges between 0 and 1 [7]. Another application is
the construction of consistent conformally invariant theories: such subalgebras allow string
compactification while preserving conformal covariance. In this paper we restrict our attention
to regular subalgebras only; however, in this case we are able to provide a recursive algorithm
for determining all charges of V ir obtained via the coset construction. Since there is a formal
analog of the coset construction for twisted affine algebras (see, e.g., [11]), we work with both
untwisted and twisted algebras.

We note that our approach is not universal. Not every subalgebra g1 of an affine Kac–
Moody algebra g is amenable to our (primarily combinatorial) methods: to be regular g1

must be semisimple (e.g. this rules out the Heisenberg subalgebra) and its root system must
agree with that of g (this rules out certain embeddings obtained via representations of g1).
Nonetheless, we are able to deal effectively with a large and important class of subalgebras.

This paper is organized as follows. In section 2, we list essential facts concerning root
systems and introduce notations used throughout this paper. In sections 3 and 4, we prove
a necessary and sufficient condition for a pair of root systems �1 ⊂ � to define a pair
algebra/subalgebra in terms of root lattices. Section 5 contains the classification of affine
regular subalgebras of affine Kac–Moody algebras in terms of maximal subalgebras. This
includes both affine and non-affine subalgebras. We simultaneously deal with both untwisted
and twisted algebras. In section 6, we apply our results to the investigation of Virasoro
charges obtained via the coset construction. We also describe all maximal conformally
invariant regular subalgebras. Section 7 is devoted to subalgebras of hyperbolic Kac–Moody
algebras.

2. Regular subalgebras and root subsystems

Denote by � a root system of an affine Kac–Moody algebra g. Our notations for the types
of affine algebras follow the convention of [9, tables Aff 1–Aff 3]. We use the same notation
for the types of corresponding root systems. Weyl groups are denoted as X̃n; we follow the
convention of [16].
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For groups and algebras of small ranks we will also use the following notation:

D̃2 = 2Ã1 B̃1 = Ã1 C̃1 = Ã1 D̃3 = Ã3 B̃2 = C̃2

D
(1)
2 = 2A

(1)
1 B

(1)
1 = Ȧ

(1)
1 C

(1)
1 = Ä

(1)
1 D

(1)
3 = A

(1)
3 B

(1)
2 = Ċ

(1)
2 A

(2)
1 = Ä

(1)
1 .

Here one dot indicates that the shortest root of the corresponding root system has length
1, while two dots indicate that the shortest root of the corresponding root system has length√

2.
Recall that root systems of untwisted algebras are listed in table Aff 1; algebras of other

types are called twisted.
By abuse of terminology, we will call a root system of an affine (respectively, hyperbolic)

Kac–Moody algebra an affine (hyperbolic) root system. A root system is called decomposable
if it is a union of two mutually orthogonal root systems. Otherwise it is called indecomposable.
Indecomposable root systems correspond to simple algebras.

For a root system � we denote by � a set of simple roots of �. We keep standard
notations �re and �im for real and imaginary roots of �. By �+ we mean the set of positive
roots of � with respect to some fixed set of simple roots �.

Let � be a root system of a Kac–Moody algebra g. Every regular subalgebra g1 of g

has a root system �1 ⊂ � that is closed with respect to addition, i.e. satisfies the following
condition:

if α, β ∈ �1 and α + β ∈ �, then α + β ∈ �1.

A root system �1 ⊂ � satisfying the condition above is called a root subsystem of �. (Another
term used in the literature is subroot system.) It is easy to see that any root subsystem �1 ⊂ �

is a root system of a regular subalgebra of g. Therefore, classifying regular subalgebras of g

is equivalent to classifying root subsystems of �.

Remark 2.1. We wish to emphasize the difference between �1 and subsets of � used to
construct representations of g. The latter are usually taken to contain a half of �. More
precisely, the first step in constructing representations of g is to take a set P ⊂ � closed with
respect to addition such that P ∪ −P = � (see, e.g., [5, 8]). Such a set P corresponds to
a Borel or, more generally, parabolic subalgebra of g whose representations yield those of g.
On the other hand, we are looking for semisimple subalgebras of g. Thus, �1 is a root system
itself. For instance, unlike P,�1 = −�1.

To simplify checking if �1 is a root subsystem of a root system �, we will restrict our
attention to simple roots only. Specifically, we have the following explicit criterion for �1 to
be a root subsystem. Let �1 be a set of simple roots of �1. Then �1 is a root subsystem of �

if and only if

α − β /∈ � for all α, β ∈ �1. (1)

This criterion is an immediate corollary of the following proposition.

Proposition 2.2 ([3, theorem 3.1]). Let � be a root system of a Kac–Moody algebra g. Let
β1, . . . , βk ∈ �re be positive real roots such that βi − βj /∈ � for all 1 � i < j � k. Let
�′ ⊂ � be a minimal root system containing β1, . . . , βk . Then �′ is a root subsystem of �

(and �′ is a root system of a regular subalgebra of g).

We say that a root subsystem �1 ⊂ � is maximal if for any root system �2 ⊂ �

containing �1 the system �2 is not a subsystem of �. Clearly, maximal root subsystems
correspond to maximal regular subalgebras.
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3. Root subsystems in root systems

In this section, we provide several technical statements that will drastically reduce the
computations necessary for classification.

We start with two elementary lemmas.

Lemma 3.1. Let �2 ⊂ �1 ⊂ � be root systems.

(1) If �1 is a root subsystem of � and �2 is a root subsystem of �1, then �2 is a root
subsystem of �.

(2) If �2 ⊂ �1 is not a root subsystem, then �2 ⊂ � is also not a root subsystem.

Proof

(1) Let α, β ∈ �2 and α + β ∈ �. To show that �2 is a root subsystem of �, we check the
definition by verifying that α + β ∈ �2. Since �2 ⊂ �1, it follows that α, β ∈ �1. By
assumption, �1 ⊂ � is a root subsystem, which implies that α +β ∈ �1. Since �2 ⊂ �1,
we also have α + β ∈ �2, so �2 ⊂ � is a root subsystem.

(2) By assumption there exist α, β ∈ �2 such that α+β ∈ �1 but α+β /∈ �2. Since �1 ⊂ �,
it follows that α + β ∈ �. Hence �2 is not a root subsystem of �. �

Lemma 3.2. Let � and �1 ⊂ � be root systems, and let � be simply-laced (i.e. all roots in
� are of the same length). Then �1 is a root subsystem of �.

Proof. Let α, β ∈ �1 be such that α − β ∈ �. Since α and β are simple roots, the angle
formed by α and β is not acute, so α − β is longer than α or β, which is impossible.

�

Remark 3.3. The same argument as in the proof of lemma 3.2 also works in a non-simply-
laced case. To check condition (1) in a non-simply-laced case, it is enough to check it for
short roots α and β (and the roots of middle length in the case of A

(2)
2n ).

Lemma 3.4 describes a procedure for classifying root subsystems �1 ⊂ � whose type
coincides with the type of �.

Lemma 3.4. Let � and �1 ⊂ � be root systems of affine algebras g and g1 of the same
type and the same rank n. Let W and W1 ⊂ W be the corresponding Weyl groups. Then
[W : W1] = kn for some k ∈ Z+. Moreover,

(1) If g is untwisted, then �1 ⊂ � is a root subsystem for any k.
(2) If g is a twisted algebra of a type different from D

(3)
4 , then �1 ⊂ � is a root subsystem if

and only if k is odd.
(3) If � is of type D

(3)
4 , then �1 ⊂ � is a root subsystem if and only if k is not a multiple of 3.

Proof. It follows from [4, lemmas 9–11] that if W and W1 ⊂ W are Euclidean reflection
groups of the same type, then either [W : W1] = kn for some k ∈ Z+ or W is of one of the
types C̃2, G̃2 and F̃ 4. In the latter case there exists a group W2 of the same type as W such
that W1 ⊂ W2 ⊂ W, [W : W2] = kn for some k, and [W2 : W1] = 2, 3 or 4, respectively
(depending on the type of W ). Checking the groups C̃2, G̃2 and F̃ 4 directly, we see that
the root systems corresponding to the groups W2 and W1 are of different types (their Dynkin
diagrams differ by directions of arrows on the edges); however, the root systems corresponding
to the groups W2 and W have the same type. Therefore, the same type of � and �1 implies
[W : W1] = kn for some k ∈ Z+.
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To determine which embeddings of root systems are root subsystems, we check condition
(1). A subgroup W1 is determined (up to an automorphism of W ) by the type of W and the
index [W : W1] = kn, so for each possible index we need to check one embedding only.

We will use an explicit presentation of affine root systems given in [9, proposition 6.3].

Denote by
◦
� the underlying finite root system of � (see [9, chapter 6]), and let

◦
�s and

◦
�l be

the sets of short and long roots of
◦
�, respectively.

(1) By [9, proposition 6.3], � = {mδ, α + mδ|α ∈ ◦
�,m ∈ Z}. Then �1 = {mkδ, α +

mkδ|α ∈ ◦
�,m ∈ Z} where k ∈ N. This implies that if α, β ∈ �1, α − β ∈ �, then

α − β ∈ �1, which is impossible for simple roots α and β.

(2) If � �= A
(2)
2n , then [9, proposition 6.3] implies � = {mδ, α + mδ, β + 2mδ|α ∈ ◦

�s, β ∈ ◦
�l,

m ∈ Z}. Then �1 = {mkδ, α + mkδ, β + 2mkδ|α ∈ ◦
�s, β ∈ ◦

�l,m ∈ Z} for some k ∈ N.
Note that � is a root system of a twisted algebra different from A

(2)
2n , thus �1 contains

two mutually orthogonal short simple roots α1 and −β1 + kδ (where α1, β1 ∈ ◦
�1 and

α1 + β1 ∈ ◦
�1). So, if k is even, we have α1 − (−β1 + kδ) ∈ �, and �1 is not a root

subsystem of �. If k is odd, then we check all pairs of short simple roots α, β ∈ �1 and
never obtain α − β ∈ �.

If � = A
(2)
2n , then � contains only one short simple root. So, if α, β ∈ �1 and

α − β ∈ �1, then α and β are two orthogonal roots of the middle length. In this case
α − β never belongs to �. Therefore, each root system �1 ⊂ � of type A

(2)
2n is a root

subsystem of �. On the other hand, if W1 ⊂ W are Weyl groups of type C̃n such that
[W : W1] = kn for an even k, then the root system �1 consists of roots of only two
different lengths. In this case �1 is not a root system of type A

(2)
2n . In the case of odd k�1

contains roots of all three lengths, so it is a root system of type A
(2)
2n .

(3) The proof is similar to the proof of (2) for � �= A
(2)
2n . �

4. Root subsystems and root lattices

The goal of this section is to prove theorem 4.4.
The following lemma holds for finite root systems as well as for affine and hyperbolic

ones. The finite case is well known and the hyperbolic case may be found in [14]. Here we
prove the affine case. For completeness we also include a proof of the finite case; see the
claim below.

Lemma 4.1. Let � and �1 ⊂ � be affine root systems of the same rank. Let L and L1 ⊂ L be
the corresponding root lattices. Then �1 is a root subsystem of � if and only if �1 = � ∩ L1.

Proof. First, assume that �1 = � ∩ L1 but �1 is not a root subsystem of �. Then there exist
α, β ∈ �1 such that α − β ∈ �. The condition �1 = � ∩ L1 implies that α − β ∈ �1. This
is impossible since α and β are simple roots of �1.

Now suppose �1 be a root subsystem of �. Also suppose that �1 �= �∩L1, so that there
exists α ⊂ � such that α ∈ L1\�1.

Denote by
◦
� and

◦
�1 the underlying finite root systems of � and �1, respectively (see [9,

proposition 6.3]), and suppose that �1 �= A
(2)
2n . Then L is generated over Z by

◦
� and δ, and

L1 is generated by
◦
�1 and kδ for some integer k � 1. Let α = α0 + lδ, α0 ∈ ◦

�. Clearly,
◦
�1 is

a root subsystem of
◦
�. Denote by

◦
L and

◦
L1⊂

◦
L the root lattices of

◦
� and

◦
�1, respectively.

5
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Claim.
◦
�1=

◦
� ∩ ◦

L1 .

We will prove this claim for the case when
◦
�1 is a maximal root subsystem of

◦
�. This

will immediately imply the claim in the general case.
By the description of maximal regular subalgebras of semisimple Lie algebras (see [2,

theorem 5.5]), in this case
◦
L1 is a proper sublattice of

◦
L. The intersection �̃1 = ◦

� ∩ ◦
L1 is a

root subsystem of
◦
� containing

◦
�1. Since

◦
�1⊂

◦
� is maximal, we see that �̃1 = ◦

�1.

Applying the claim above we have α0 ∈ ◦
�1. Moreover, α ∈ L1 implies k | l. Now, if �1

is a root system of an untwisted algebra, we see that α ∈ �1, contradicting our assumption.

If �1 is a root system of a twisted algebra and α /∈ �1, we see that α0 is a long root of
◦
�1,

and either 3 � | (l/k) (in the case of �1 = D
(3)
4 ) or l/k is odd (otherwise). In both the cases,

at least one of α + kδ and α − kδ is a root of �1. Combined with the assumption that α ∈ �1

and ±kδ ∈ �1, this implies that �1 is not a root subsystem of �. The contradiction proves
the lemma for all �1 �= A

(2)
2n .

In the case �1 = A
(2)
2n , we have � = A

(2)
2n . Then

◦
�1 = ◦

�. Furthermore, L is generated

over Z by
◦
� and (αn + δ)/2 (where αn is a long root of

◦
�), and L1 is generated by

◦
� and

(αn+(2k−1)δ)/2 for some integer k � 1. Two cases are possible: either α = (αn+(2l−1)δ)/2

for a long root αn ∈ ◦
� and an integer l or α = α0 + lδ for α0 ∈ ◦

� and an integer l.
Let α = (αn + (2l − 1)δ)/2. Since α ∈ L1, we have (2k − 1) | (2l − 1). This implies that

α ∈ �1.
Now let α = α0 + lδ. Again, α ∈ L1 implies (2k − 1) | (2l − 1). Since α /∈ �1, we

see that α0 is a long root of
◦
�1 and (2l − 1)/(2k − 1) is odd. Hence, α + (2k − 1)δ ∈ �1.

Furthermore, (2k − 1)δ is also a root of �1, which contradicts the assumption that �1 is a root
subsystem of �. This completes the proof of the lemma.

Remark 4.2. Note that to prove sufficiency of the condition �1 = � ∩ L1, we do not need to
assume that �1 and � have the same rank.

Corollary 4.3. Let � and �1 ⊂ � be affine root systems of the same rank. Let L and L1 ⊂ L

be the corresponding root lattices, and let W and W1 be the Weyl groups of � and �1. Assume
that W1 is a maximal reflection subgroup of W . Then �1 is a root subsystem of � if and only
if L1 is a proper sublattice of L.

Moreover, this sublattice has index 2 unless (�1,�) = (
A

(1)
2 ,G

(1)
2

)
or

(
G

(1)
2 ,D

(3)
4

)
. In

the latter cases the index equals 3.

Proof. First, suppose that L1 = L. Then � ∩ L1 = � ∩ L = � �= �1. Lemma 4.1 implies
that �1 is not a root subsystem of �.

Now, let L1 be a proper sublattice of L. By lemma 4.1 it suffices to check that �1 = �∩L1.
For �im

1 the assertion is obvious. Assume that there exists α ∈ �re such that α ∈ L1 such that
α /∈ �1.

Consider the subgroup G0 of W generated by reflections with respect to all roots in L1.
Obviously W1 ⊂ G0. Since W1 is maximal in W and G0 �= W1, it follows that G = W1.
Hence each simple root α in � can be represented as a linear combination of roots in L1

with integer coefficients. Therefore α belongs to L1 itself. Thus, L = L1 contradicting the
assumption.

A direct calculation shows that for each but two cases, the roots of the subsystem generate
an index-two sublattice of the root lattice, while in the remaining cases the index of the
sublattice equals 3. �

6
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To prove the main result of this section, we drop the assumption that � and its subsystem
�1 have the same rank.

Theorem 4.4. Let � and �1 ⊂ � be affine root systems. Let L and L1 ⊂ L be the
corresponding root lattices. Then �1 is a root subsystem of � if and only if �1 = � ∩ L1.

Proof. We need to prove one implication only (see remark 4.2). Namely, suppose that �1 is
a root subsystem of �. Then we need to show that �1 = � ∩ L1. Moreover, we may assume
that �1 ⊂ � is a maximal root subsystem.

If ranks of � and �1 are equal, then the statement follows from lemma 4.1. Hence, we
can assume that the rank of �1 is less than the rank of �. In particular, L1 is a proper sublattice
of L.

Consider the set �′ = � ∩ L1. Clearly �′ is a root subsystem of � containing �1. Since
L1 does not coincide with L,�′ is a proper subsystem of �. Now maximality of �1 ⊂ �

implies �′ = �1 and the theorem is proved.
�

5. Classification of regular subalgebras

Given an affine root system �1 contained in an affine root system �, we can use condition (1)
to determine if �1 is a root subsystem of �. Our goal is to list all affine root subsystems of
root systems of every affine Kac–Moody algebra.

Checking condition (1) is straightforward, and lemmas 3.1, 3.2 and 3.4 help to reduce the
computations. Thus, essentially we only need to list all possible pairs (�,�1). This is done
as follows.

For each of the finitely many types of affine algebras (listed in [9, tables Aff 1–Aff 3])
we consider its root system � and Weyl group W . We list all possibilities for its reflection
subgroup W1 ⊂ W using the results of [4]. Then for each subgroup W1 ⊂ W we check all
possible root systems �1 ⊂ � corresponding to such a subgroup. For example, a subgroup of
type B̃n may correspond to a root system of either type B(1)

n or type A
(2)
2n−1, while a subgroup

of type C̃n may correspond to one of the types C(1)
n ,D

(2)
n+1 and A

(2)
2n . Furthermore, we consider

not only the types of subgroups (and the corresponding root systems) but also all different
embeddings of subgroups of this type. Most embeddings of Euclidean reflection subgroups
of finite index of type X̃ in Euclidean reflection groups of type Ỹ can be distinguished by
the indices of subgroups. So, to indicate which embeddings correspond to subalgebras we
specify the indices of respective subgroups (in the case of finite index). If a subgroup is of
infinite index, we check only if a root system �1 of a given type can be a root subsystem of �.
(If the answer is affirmative, we place this subsystem in the resulting tables without further
distinguishing it from other embeddings, which may not be root subsystems.) For some types
of root systems � and �1 ⊂ �, the system �1 may be either short or long (for example, for
D

(1)
4 ⊂ F

(1)
4 ). In such cases we check all possibilities and state in the tables below whether

the root subsystem is short or long.

Remark 5.1. It was stated in [4, theorem 1] that if W is an indecomposable group of a given
type Y, then all reflection subgroups of a given type X can be distinguished by their indices
(modulo the automorphism group of W ). However, while preparing this paper, we discovered
an exception to this rule.

Namely, if W and W1 are of types F̃ 4 and C̃4, respectively, there are two different
embeddings of a subgroup of type C̃4 into a group of type F̃ 4 with the same index
[W : W1] = 24k4 for any k ∈ N. Specifically, there is a chain of embeddings C̃4 ⊂ B̃4 ⊂ F̃ 4,

7
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where an automorphism of C̃4 may be extended to an automorphism of B̃4, but not to an
automorphism of F̃ 4.

The oversight resulted from an omission in a case-by-case check at the very end of the
proof of theorem 1.

To make our tables more readable, we list maximal root subsystems only (others can
easily be retrieved from the lists of maximal ones). Note that a decomposable maximal root
subsystem does not necessarily correspond to a maximal subgroup, namely, for a chain of root
systems �1 ⊂ �2 ⊂ �3 it is possible that �2 ⊂ �3 is not a root subsystem, while �1 ⊂ �3

is.
First, we consider indecomposable affine root subsystems of maximal rank, so that

W1 ⊂ W is an indecomposable Euclidean reflection subgroup of finite index. Then we
allow decomposable W1. Further on, we move to affine root subsystems of lower rank (and
then [W : W1] is infinite). Finally, we describe remaining root subsystems that correspond to
direct products of a spherical and a Euclidean reflection group.

5.1. Indecomposable affine root subsystems of maximal rank

Below we provide a typical procedure of classifying maximal rank root subsystems of the
root system of an untwisted algebra. Dealing with twisted algebras usually involves more
computations but is not otherwise different.

Example 5.2 (indecomposable affine root subsystems of B(1)
n , n � 3). The Weyl group W is

of the type B̃n. The results in [4] imply that its indecomposable finite index subgroups have
types B̃n, C̃n and D̃n. For subgroups of these types we should consider root systems of types
B(1)

n and A
(2)
2n−1 (for B̃n), C(1)

n ,D
(1)
n+1 and A

(2)
2n (for C̃n) and D(1)

n (for D̃n). The root system

of type A
(2)
2n is irrelevant because it contains roots of three different lengths, while B(1)

n only
has roots of two different lengths. Furthermore, short roots of B(1)

n are mutually orthogonal,
which implies that neither A

(2)
2n−1 nor C(1)

n can be contained in B(1)
n . So, we need to check

only root systems of types B(1)
n ,D

(2)
n+1 and D(1)

n . Note that embeddings of groups B̃n, C̃n and
D̃n into B̃n are determined by indices up to isomorphisms of B̃n, so it suffices to check one
embedding for each possible index. Explicit check shows that embeddings of B(1)

n and D(1)
n

satisfy condition (1), while that of D
(2)
n+1 does not.

Theorem 5.3. Let � be an indecomposable affine root system and �1 ⊂ � a maximal root
subsystem. If �1 is an indecomposable affine root subsystem of maximal rank, then �1 ⊂ �

is one of the root subsystems listed in table 1.

Remark 5.4. Our notation in tables 1 and 2 is as follows. If a root system of some type X(r)
n

may be embedded in � with different root lengths, we write Ẋ(r)
n for a ‘short’ embedding and

Ẍ(r)
n for the ‘long’ one.

5.2. Decomposable affine root subsystems of maximal rank

Example 5.5 (decomposable affine root subsystems of B(1)
n , n � 3). As shown in

example 5.2, B(1)
n may contain root systems of types B(1)

n ,D(1)
n and D

(2)
n+1 (not necessary

as root subsystems). Furthermore, it follows from [4, table 5] that any maximal subgroup of
B̃n is B̃m + B̃n−m (m � 1), and similarly maximal subgroups of C̃n and D̃n are C̃m + C̃n−m

and D̃m + D̃n−m, respectively. So, looking through the chains of maximal subgroups (and

8
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Table 1. Indecomposable maximal affine root subsystem of maximal rank. The right column lists
possible indices of Weyl subgroups W1 ⊂ W corresponding to maximal root subsystems �1 ⊂ �

(p is any prime number).

� �1 [W : W1] � �1 [W : W1]

A
(1)
1 A

(1)
1 p A

(2)
2 A

(2)
2 p, p �= 2

A
(1)
n (n � 2) A

(1)
n pn Ȧ

(1)
1 2

B
(1)
n (n � 3) B

(1)
n pn Ä

(1)
1 2

D
(1)
n 2 A

(2)
2n , n � 2 A

(2)
2n pn, p �= 2

C
(1)
n (n � 2) C

(1)
n pn A

(2)
2n−1 2

D
(1)
n (n � 4) D

(1)
n pn B

(1)
n 2n+1

G
(1)
2 Ä

(1)
2 2 A

(2)
4 D

(2)
3 2

G
(1)
2 p2 A

(2)
2n−1 n � 3 A

(2)
2n−1 pn, p �= 2

F
(1)
4 B

(1)
4 3 C

(1)
n 2n−1

F
(1)
4 p4 D

(2)
n+1 n � 2 D

(2)
n+1 pn, p �= 2

E
(1)
6 E

(1)
6 p6 B

(1)
n 2

E
(1)
7 A

(1)
7 24 × 32 D

(2)
3 C

(1)
2 2

E
(1)
7 p7 E

(2)
6 E

(2)
6 p4, p �= 2

E
(1)
8 A

(1)
8 27 × 32 × 5 F

(1)
4 4

D
(1)
8 2 × 33 × 5 C

(1)
4 23 × 3

E
(1)
8 p8 D

(3)
4 D

(3)
4 p2, p �= 3

G
(1)
2 3

Ȧ
(1)
2 2

taking into account that short roots of B(1)
n are mutually orthogonal) we conclude that any

root subsystem �1 of B(1)
n splits into components of types B(1)

m ,D(1)
m and D

(2)
m+1 (with possibly

different ranks of components). If �1 has at least one component of type D
(2)
m+1, then �1 is

not a root subsystem. Indeed, if α and β are short simple roots of D
(2)
m+1, then α − β belongs

to B(1)
n . Similarly, if �1 is a root subsystem, then it contains at most one component of type

B(1)
m . Therefore, any decomposable affine root subsystem (of maximal rank) in B(1)

n can be
written as εB(1)

m0
+ D(1)

m1
+ · · · + D(1)

ms
, where ε = 0 or 1 and εm0 + m1 + · · · + ms = n for m0 � 1

and mi � 2, i = 1, . . . , s. Clearly, all these root systems are root subsystems of B̃n, and the
only maximal subsystems are B(1)

m + D
(1)
n−m for m = 1, . . . , n − 2.

Similar straightforward calculations for every indecomposable affine root system imply
the following theorem.

Theorem 5.6. Let � be an indecomposable affine root system and �1 ⊂ � its maximal root
subsystem. If �1 is a decomposable root subsystem of maximal rank, then �1 ⊂ � is one of
the subsystems listed in table 2.

9
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Table 2. Decomposable maximal affine root subsystems of maximal rank.

� �1 [W : W1] � �1 [W : W1]

B
(1)
n B

(1)
m + D

(1)
n−m 4

(
n
m

)
A

(2)
2n−1 A

(2)
2m−1 + A

(2)
2n−2m−1 2

(
n
m

)

C
(1)
n C

(1)
m + C

(1)
n−m

(
n
m

)
A

(2)
2n A

(2)
2m + A

(2)
2n−2m−1 2

(
n
m

)

D
(1)
n D

(1)
m + D

(1)
n−m 4

(
n
m

)
D

(1)
m + A

(2)
2n−2m 2m+2

(
n
m

)

E
(1)
6 A

(1)

5 + A
(1)
1 23 × 32 D̈

(2)
3 + A

(2)
2n−4 2

(
n
m

)

3A
(1)
2 24 × 32 × 5 D

(2)
n+1 D

(1)
n−m + D

(2)
m+1 4

(
n
m

)

E
(1)
7 D

(1)
6 + A

(1)
1 2 × 32 × 7 E

(2)
6 A

(2)

5 + Ä
(1)
1 23 × 3

A
(1)

5 + A
(1)
2 25 × 32 × 7 D

(3)
4 Ȧ

(1)
1 + Ä

(1)
1 6

E
(1)
8 E

(1)
7 + A

(1)
1 24 × 3 × 5

E
(1)
6 + A

(1)
2 26 × 3 × 5 × 7

2A
(1)
4 28 × 33 × 5 × 7

F
(1)
4 Ȧ

(1)
2 + Ä

(1)
2 25 × 3

C
(1)
3 + Ä

(1)
1 27 × 3

G
(1)
2 Ȧ

(1)
1 + Ä

(1)
1 6

5.3. Affine root subsystems of lower rank

To classify root subsystems of lower rank we use the same procedure as in the case of maximal
rank. More precisely, we consider chains of subgroups G1 ⊂ G2 ⊂ · · · ⊂ Gs = W , where
W is a Weyl group of g and each Gi a maximal subgroup of Gi+1. Then we check which
root systems correspond to Gi and which of those are root subsystems. Since we obtain root
subsystems of ranks smaller than that of g, one of the subgroups Gi ⊂ Gi+1 must be a maximal
subgroup of infinite index. Such subgroups are described in [4, theorem 3]. Namely, these
maximal subgroups are of the following types: Ãk + Ãn−1−k ⊂ Ãn (k � n − 1); D̃n−1 ⊂ D̃n;
Ãn−1 ⊂ D̃n; D̃5 ⊂ Ẽ6 and Ẽ6 ⊂ Ẽ7.

Example 5.7 (lower rank affine root subsystems of B(1)
n , n � 3). As in example 5.5 we see

that any affine root subsystem of B(1)
n can be written as εB(1)

m0
+ D(1)

m1
+ · · · + D(1)

ms
, where ε = 0

or 1. If εm0 + m1 + · · · + ms < n, then this is a root subsystem of B
(1)
n−1, which in its turn is a

root subsystem of B(1)
n . So, the only maximal root subsystem of lower rank is B

(1)
n−1.

Subgroups described in [4, theorem 3] do not affect the list of maximal root subsystems
of B(1)

n . Indeed, among the groups Ãn, D̃n, Ẽ6 and Ẽ7, only D̃n is a subgroup of B̃n. The
corresponding root system D(1)

n is a root subsystem of B(1)
n , thus none of the root subsystems

of D(1)
n can be maximal in B(1)

n .

Applying the above procedure to each indecomposable affine root systems, we obtain the
following theorem.

Theorem 5.8. Let � be an indecomposable affine root system and �1 ⊂ � a maximal affine
root subsystem. If the rank of �1 is less than the rank of �, then (�,�1) is one of the following
pairs:(
A(1)

n , A
(1)
k + A

(1)
n−1−k

)
,

(
E

(1)
7 , E

(1)
6

)
,

(
B(1)

n , B
(1)
n−1

)
,

(
E

(1)
6 ,D

(1)

5

)
,(

C(1)
n , A

(1)
n−1

)
,

(
A

(2)
2n−1, A

(1)
n−1

)
,

(
D(1)

n , A
(1)
n−1

)
,

(
D

(2)
n+1,D

(2)
n

)
.

10



J. Phys. A: Math. Theor. 41 (2008) 365204 A Felikson et al

5.4. Non-affine root subsystems

Let � be an affine root system. Consider a regular subsystem �1 ⊂ �. Clearly �1 is a direct
sum of an affine and a finite root system �a and �s . Let �s = �1 ∪ · · · ∪ �k , where �i are
indecomposable and mutually orthogonal. Let �i be a set of simple roots of �i, 1 � i � k.
Denote by �s = �1 ∪· · ·∪�k a set of simple roots of �s . Add to each �i a root βi = θi +kiδ,
where θi is the lowest root of �i and ki is the least positive integer such that θi +kiδ ∈ �. Then

�a
def= ⋃s

i=1{�i, βi} is a set of simple roots of an affine root subsystem of � that contains �1.
Reversing the procedure above, we obtain the following theorem.

Theorem 5.9. Let � be an affine root system and �̃ its affine root subsystem. Let �1, . . . ,�k

be indecomposable components of �̃. Let � be a set of simple roots of �̃ and �i a set of
simple roots of �i, 1 � i � k. Denote by J ⊂ {1, . . . , k} the set of indices such that j ∈ J

if �j is a root system of an untwisted algebra. Let J ′ be a subset of J . For each j ∈ J ′

discard the root α
j

0 ∈ �j from � (see [9, table Aff 1]) and denote by �′ the set of simple roots
obtained. Let �′ ⊂ � be the root system whose set of simple roots is �′.

Then �′ is a root subsystem of �.
Moreover, for every non-affine root subsystem �′ of �, there exists an affine root subsystem

�̃ of � such that �′ can be obtained from �̃ in this way.

6. Conformally invariant regular subalgebras of affine Kac–Moody algebras

Recall that an untwisted affine Kac–Moody algebra is an extension of a loop algebra over
a semisimple finite-dimensional Lie algebra g. For the duration of this section, we fix the
notation ĝ = g[t, t−1] ⊕ CK , where K is a central element. The bracket in ĝ is defined
as [atm, btn] = [a, b]tm+n + δm,−n(a|b)K , where (|) is an invariant form on g such that the
square of the highest root of g is 2. Given an irreducible representation of ĝ,K necessarily
acts as a scalar k called the level of this representation. Though k can take on any value, in
physical literature it is assumed to be integral and positive. For the most part we will impose
some of these restrictions as well. However, it should be pointed out that from a purely
mathematical standpoint half-integer levels are also interesting (see, e.g., [13] for a vertex
algebra construction related to a pair of conformally invariant algebras discussed below).

It is well known that the vacuum module Vk(g) of ĝ of level k carries the structure of
a vertex operator algebra with the canonical conformal vector ωk(g) given by the Sugawara
construction. The central charge of ωk(g) is

Dk(g) =
∑ k dim gi

k + ȟi

,

where gi are irreducible components of g, g = ⊕gi and ȟi is the dual Coxeter number of gi .
The Fourier coefficients of ωk(g) form a Virasoro algebra that acts naturally on ĝ-modules of
level k [10]. We can thus construct a large family of representations of the Virasoro algebra
with central charge Dk(g) with desired properties (unitary, of highest weight, etc).

6.1. Coset construction

This construction can be generalized via the so-called coset construction as follows [6, 10].
Consider a graded subalgebra ĥ ⊂ ĝ whose Cartan subalgebra is in the Cartan subalgebra of ĝ

and has the same imaginary root for some choice of root system. (Apart from subalgebras of the
same type, all regular subalgebras constructed above satisfy this condition.) Vk′(h) naturally
embeds into Vk(g) for a specific choice of k′. Namely, for ĥ simple, let j be the square of the

11
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highest root in ĥ with respect to the form ( | ) on ĝ. Then k′ = 2k/j . (The quantity 2/j is
known as the Dynkin index of h in g.) In the semisimple case, Vk′(h) is a direct sum of affine
vertex algebras corresponding to simple components of h. We can thus consider the difference
ωk(h, g) = ωk(g) − ωk(h). A direct computation utilizing the Sugawara construction shows
that ωk(h, g) is conformal with the central charge Dk(g, h) = Dk(g) − Dk(h).

If Dk(g, h) �= 0, we obtain yet another construction of representations of the Virasoro
algebra with a given charge. In particular, this strategy was used in the seminal work [7] to
construct all irreducible unitary highest weight representations of the Virasoro algebra with
charges between 0 and 1.

The case Dk(g) = Dk(h) is also important, since then the pair h ⊂ g can be used to
construct consistent conformally invariant theories. Such pairs were studied in, e.g., [1] or
[15]. Both papers imposed certain restrictions such as k = 1 (or, more generally, positive
integral) in [1] or algebras being simply-laced in [15].

Below, using our classification of regular subalgebras of simple non-twisted affine Kac–
Moody algebras, we provide a unified strategy for computing all possible values of central
charge for ωk(h, g), where h is a regular subalgebra of g. We also indicate when h is
conformally invariant (i.e. when Dk(g) = Dk(h)).

Note first that if ĥ is not a maximal subalgebra of ĝ, i.e. if ĥ ⊂ ĥ′ ⊂ ĝ, then it suffices to
compute the required values for the pairs ĥ ⊂ ĥ′ and ĥ′ ⊂ ĝ. Thus, we restrict our attention
to maximal subalgebras only. As noted above, we will also consider only subalgebras of the
type different from ĝ’s. Moreover, if g is not simple, i.e. g = ⊕gi , then it suffices to consider
projections of h onto gi as subalgebras of gi . Thus, we can assume that g is simple.

6.2. Conformally invariant subalgebras of non-twisted algebras

We consider each of the types of g in turn. The values of dual Coxeter numbers for ĝ can be
found in, e.g., [9, section 6.1]. We assume that k �= ȟ (i.e. that the level k is not critical) for
all algebras and subalgebras considered.

An. A maximal regular subalgebra h must be of the type Am + An−m−1, 0 <

m < n. (Here and below we freely use subalgebra lists in theorems 5.3, 5.6 and 5.8.)
Then Dk(g, h) = k{(n + 2k + 1)(n + k(n − m)(m + 1)) − m(n − m − 1) + (k + 1)2/

(k + n + 1)(k + m + 1)(k + n − m)}. Clearly for k, n,m > 0, n + 2k + 1 > m and
n + k(n − m)(m + 1) > n − m − 1, hence the numerator in Dk(g, h) is positive. It
follows that there are no conformally invariant maximal regular subalgebras for k positive.
More generally, a regular subalgebra of g of type An is a direct sum of subalgebras
of the same type. Thus, it suffices to consider a subalgebra h of type Am. Here
Dk(g, h) = k{(n − m)((n + m + 2)(k + 1) + nm)/(k + n + 1)(k + m + 1)}. Thus, there are
no conformally invariant subalgebras in type Am for k positive.

Bn. For h of type Bn−1,Dk(g, h) = k{(4n2 − 8n + 4kn − k + 1)/(k + 2n − 1)

(k + 2n − 3)}. The numerator, if viewed as a function of n, has discriminant k2 − 3k + 3. For
an integer k, it is a full square only for k = 2. Thus, the numerator is never zero if k and n are
integral and there are no conformally invariant pairs (g, h) of this type.

For h of type Dn,Dk(g, h) = kn{(2k + 2n − 3)/(k + 2n − 1)(k + 2(n − 1))}. Clearly,
there are no conformally invariant pairs for any n on every integer level.

For a decomposable subalgebra h of type Bm + Dn−m, 0 < m < n,Dk(g, h) =
k(n − m)(2m + 1){(k − 1)(2n + 2k − 3)/(k + 2n − 1)(k + 2m − 1)(k + 2(n − m) − 2)}. The
subalgebra is conformally invariant on level 1. Note that just as in the case of a subalgebra
of type Dn, we also get a conformally invariant subalgebra on the same half-integer level
−n − 3/2.
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Cn. For h of type An−1,Dk(g, h) = k{(n3 + n2k + 2kn + k + n + 1)/(k + n + 1)(2k + n)}.
Setting the numerator to zero and solving for integral k, we see that n ≡ 1 mod 3. Also, a
direct computation shows that −n/3 < k < 1 −n/3. Both statements imply that k = n/3 − 1
but for such a value of k the numerator is zero only when n = −2. Hence there are no
conformally invariant pairs of this type.

If h is decomposable of type Cm + Cn−m, 0 < m < n, then Dk(g, h) = m(n −
m)k{(2k + 1)(2k + n + 2)/(k + n + 1)(k + m + 1)(k + n − m + 1)}. Hence h is conformally
invariant only for even n on the level k = −n/2 − 1. Also, if h is indecomposable of
type Cm,Dk(g, h) = k(n − m){(2(m + n) + 1)(k + 1) + 2mn/(k + n + 1)(k + m + 1)}. For k
positive, there are no conformally invariant subalgebras of this type.

Dn. For h of type An−1,Dk(g, h) = k{(k+1)n2 +(2−k)n+k−2/(k + 2(n − 1))(k + n)}.
The numerator, if viewed as a function of n, has discriminant 12 − 3k2. For an integer k, it is
a full square only for k = 1, 2, at which levels the numerator is not zero. Thus, Dk(g, h) �= 0
for any integral k and n > 1 and there are no conformally invariant pairs of this type.

For a decomposable maximal subalgebra h of type Dm + Dn−m, 0 < m < n, we have
Dk(g, h) = 4km{(k−1)(n−m)(n+k−2)/(k + 2(n − 1))(k + 2(m − 1))(k + 2(n − m − 1))}.
It follows that on level k = 1 every subalgebra whose simple components are of type D is
conformally invariant. Also, the maximal subalgebra is conformally invariant on level 2 − k.

E6. h is either indecomposable of type D5 or decomposable of types
A5 + A1 or A2 + A2 + A2. Thus, the possible values of Dk(g, h) are
k{(84 + 33k)/(k + 12)(k + 8)}, 40k{(k − 1)(k + 3)/(k + 12)(k + 6)(k + 2)}, 6k{(8k − 21)/(k+
12) (k + 3)}. For k = −3, 1, the pair (E6, A5 + A1) is conformally invariant.

E7. h can be of the types E6, A7,D6 + A1 and A5 + A2. The
corresponding values of Dk(g, h) are k{(55k + 192)/(k + 18)(k + 12)}, 70k{(k − 1)/

(k + 8)(k + 18)}, 64k{(k − 1)(k + 4)/(k + 18)(k + 10)(k + 2)} and 90k{(k − 1)(k + 4)/

(k + 18)(k + 6)(k + 3)}. Note that we obtain conformally invariant pairs for k = 1,−4 and
that subalgebras D6 + A1 and A5 + A2 produce conformally invariant pairs for the same levels.

E8. h is either indecomposable of the types A8 and D8 or decomposable of
the types E7 + A1, E6 + A2 or A4 + A4. The possible values of Dk(g, h) are
168k{(k − 1)/(k + 30)(k + 9)}, 128k{(k − 1)/(k + 30)(k + 14)}, 112k{(k − 1)(k + 6)/

(k + 30)(k + 18)(k + 2)}, 162k{(k − 1)(k + 6)/(k + 30)(k + 12)(k + 3)} and 200k{(k − 1)/

(k + 30)(k + 5)}. Note that all maximal subalgebras are conformally invariant for k = 1
and decomposable subalgebras with nonisomorphic components are also both conformally
invariant on level k = −6.

F 4. h can be of the types B4, A2 + A2 or C3 + A1. The possible values
of Dk(g, h) are 8k{(2k + 5)/(k + 9)(k + 7)}, 4k{(20k2 + 51k + 9)/(k + 9)(k + 3)(2k + 3)} and
k{(59k2 + 61k − 70)/2(k + 9)(k + 4)(k + 1)}. There are no conformally invariant maximal
regular subalgebras on integer levels (but there is a conformally invariant subalgebra on the
half-integer level −5/2).

G2. h is either of the type A2 or A1 + A1. Thus, Dk(g, h) is either
2k{(17k + 5)/3(k + 4)(k + 1)} or 2k{(15k2 + 26k + 14)/(k + 4)(k + 2)(3k + 2)}. There are no
conformally invariant maximal regular subalgebras.

Remark 6.1

(1) Our computations confirm the conclusion of [15] that for positive integer levels
conformally invariant subalgebras exist only on level 1 (for a direct physical proof of
this fact, see [12]). However, there are conformally invariant subalgebras on negative
integer and half-integer levels.
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(2) The above discussion implies that conformally invariant subalgebras are rather rare.
However, every maximal subalgebra of an algebra of type E8 is conformally invariant.
Such exceptional behavior is probably a consequence of some intrinsic property of affine
algebras of type E

(1)
8 .

6.3. Conformally invariant subalgebras of twisted affine algebras

There are analogs of the Sugawara and coset constructions of Virasoro algebras for twisted
affine Kac–Moody algebras. Details can be found in, e.g., [11, section 3.4]. For our purposes
it suffices to describe what central charges we can obtain from an algebra ĝ(σ ) of type X

(p)
n

and its subalgebra ĥ(σ |h) of type Y
(q)
m . Here σ is an automorphism of g that restricts to h.

On the level k, we obtain the realization of the Virasoro algebra with the charge Dk(g), and
corresponding to ĥ(σ |h), another realization with the charge Dk′(h).

Recall that σ is completely determined by an (m + 1)-tuple (s0, . . . , sl), where l is the
rank of g: σ(Ej ) = exp

(
2π isj /

(
p

∑
aksk

))
Ej . Let ns(g) = ∑

aisi (here ai are labels on
the Dynkin diagram of ĝ). For the pair ĥ(τ ) ⊂ ĝ(σ ) set

r = qns(h)

pns(g)
and Dk(g, h) = rDk(g) − Dk′(h).

Below we will provide examples only for σ ’s induced by diagram automorphisms. Here
ns(g) = ns(h) = 1.

A(2)
2n . We consider the algebra A

(2)
2 separately. It has two distinct maximal subalgebras

of the type A
(1)
1 . The corresponding values of Dk(g, h) are k{(k − 1)/(k + 3)(k + 2)} and

k{(13k − 1)/2(k + 3)(2k + 1)}. Thus, there is a conformally invariant subalgebra on level 1.
For n > 1, A

(2)
2n has subalgebras of the type A

(2)
2n−1, B

(1)
n , A

(2)
2m + A

(2)

2(n−m)−1,D
(1)
m +

A
(2)
2n−2m,D

(2)
3 + A

(2)
2n−4.

For a subalgebra of the type A
(2)
2n−1,Dk(g, f h) = k{(4n2 + 1)(k + 1)+

2n(4k + 1)/2(k + 2n + 1)(k + n)}. A direct computation shows that no integer k makes
this expression zero. Thus, a subalgebra of this type is never conformally invariant. For
n = 2, the subalgebra obtained in the same manner has type D

(2)
3 . Here Dk(g, f h) =

5k{(29k + 37)/2(k + 9)(k + 2)} and, again, the subalgebra is not conformally invariant.
For a subalgebra of the type B(1)

n ,Dk(g, h) = kn{(k − 2n − 3)/(k + 2n + 1)(k + 2n − 1)}.
The subalgebra is conformally invariant on the level k = 2n + 3.

For decomposable subalgebras of A
(2)
2n , we will write Dk(g, h) in terms of N = 2n and

M = 2m. For the type A
(2)
2m +A

(2)

2(n−m)−1,Dk(g, h) = k[k(2(N −M)(M +N +MN)+k(4(M +
M2 − N) − (M + N)2) + (5N − 3M)) − (N − 1)(M − 1) + M2 + N2 + (k + 1)2 + 1]/[(k +
N + 1)(k + M + 1)(2k + N − M)]. There are no conformally invariant subalgebras for small
positive values of k.

For the type D(1)
m + A

(2)
2n−2m, we have

Dk(g, h) = km
2Nk(N − M + 2k + 1) + M(N − k − 3k2 + 2) + 5k2 + 2k − 2

2(k + N + 1)(k + N − M + 1)(k + m − 1)
.

Again, there are no conformally invariant subalgebras for small positive values of k.
For the type D

(2)
3 + A

(2)
2n−4, we have

Dk(g, h) = k
2kN(8(k + N) − 7) + (N − 1)2 − 31k2 − 18k + 12

2(k + N + 1)(k + N − 3)(k + 2)
.

The numerator is never zero mod 4, hence there are no conformally invariant subalgebras of
this type.
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A(2)
2n−1. Maximal regular subalgebras have the types A

(1)
n−1, C

(1)
n , A

(2)
2m−1 + A

(2)

2(n−m)−1.

For the type A
(1)
n−1,Dk(g, h) = 3nk{(2nk + 1)/2(k + 2n)(2k + n)}. There are no

conformally invariant pairs of these types.
For the type C(1)

n ,Dk(g, h) = −(2n + 1)k{(4n2 − 2n + 2 + (2n + 1)k)/2(k + 2n)(k + 2n +
2)}. This expression is zero only if k ∈ (−2n − 1,−2n − 2), hence for integral k there are no
conformally invariant subalgebras of this type.

For the type A
(2)
2m−1 + A

(2)

2(n−m)−1,Dk(g, h) can be found from the expression for the

subalgebra of type A(1)
m + A

(1)
n−m−1 of the algebra A(1)

n above. Here we also conclude that there
are no conformally invariant subalgebras on positive levels.

D(2)
n+1. For a generic n, maximal regular subalgebras have the types B(1)

n ,D(2)
n and

D
(1)
n−m + D

(2)
m+1.

For the type B(1)
n ,Dk(g, h) = −k{(2(2n2 − n + 1) + (3n − 1)k)/2(k + 2n)(k + 4n − 2)}.

Dk(g, h) = 0 for k = −(4n2 − 2n + 2)/(3n − 1), hence k ∈ (−4n/3 − 7/9,−4n/3 + 2/9).
Depending on the value of n mod 3, k must be of the form 4n/3, (4n+ 1)/3, (4n+ 2)/3). Only
in the former case and only for n = 3, k makes Dk(g, h) zero. Thus, we have a conformally
invariant subalgebra of D

(2)
3 on level −4.

For the type D(2)
n ,Dk(g, h) = k{(4n(n + k − 1) + k − 2)/(k + 2n)(k + 2n − 2)}. This

expression is zero only if k ∈ (n − 2, n − 1), hence there are no conformally invariant pairs
of this type.

For the type D
(1)
n−m + D

(2)
m+1,Dk(g, h) = −k(n−m)[8((n−m)(2mn + 1 + k(m + n))− 1) +

2k(3n(1 − 2k) + m(6 − 5k) − 2mn) + 7k(2 − k)]/[2(k + 2n)(k + 2m)(k + 4n − 4m − 4)]. We
note that this subalgebra is not conformally invariant for k = 1.

An algebra of type D
(2)
3 also has a maximal subalgebra of type C

(1)
2 . For this pair,

Dk(g, h) = −5k(5k + 14)/2(k + 4)(k + 6).
E(2)

6 . A maximal regular subalgebra can have the types C
(1)
4 , F

(1)
4 , A

(2)

5 +
A

(1)
1 . The respective values of Dk(g, h) are −3k{(11k + 158)/(k + 12)(k + 10)},

−13k{(5k + 42)/(k + 12)(k + 18)} and k{(31k2 + 4k − 672)/2(k + 12)(k + 6)(k + 4)}. Thus,
C

(1)
4 and F

(1)
4 subalgebras are never conformally invariant. The subalgebra of the type

A
(2)

5 + A
(1)
1 is not conformally invariant as well; direct computations also show that neither are

its simple components.
D(3)

4 . Maximal regular subalgebras have the types G
(1)
2 , A

(1)
2 , A

(1)
1 + A

(1)
1 . The corre-

sponding values of Dk(g, h) are −28k{(k + 3)/(k + 6)(k + 12)}, 6k{(k − 1)/(k + 6)(k + 3)}
and 2k{(k − 4)/(k + 6)(k + 2)}. We obtain conformally invariant maximal subalgebras on the
levels k = −3, 1, 4.

7. Regular non-indefinite subalgebras of hyperbolic Kac–Moody algebras

In this section, we apply the classification of regular subalgebras of affine Kac–Moody algebras
to the investigation of regular subalgebras of hyperbolic Kac–Moody algebras.

Let � be a hyperbolic root system (i.e., a root system of a hyperbolic Kac–Moody
algebra). Denote by W its Weyl group. Let �1 ⊂ � be a root subsystem containing only
finite and affine indecomposable components. Then �1 is a subsystem of some maximal
affine or finite root subsystem �′ of �. Root systems of hyperbolic Kac–Moody algebras are
described by those Dynkin diagrams whose proper subdiagrams are of either finite or affine
type. Maximal subdiagrams correspond exactly to maximal affine or finite root subsystems.
Their Weyl groups can be obtained as groups generated by all but one reflections in the facets
of the fundamental chamber of W .
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Given a hyperbolic Kac–Moody algebra g, the description above allows us to classify
all regular subalgebras containing no summands of indefinite type. More precisely, any such
subalgebra can be obtained by the following procedure.

Take the Dynkin diagram � of the root system of g and denote the number of its nodes
by l. Consider all subdiagrams of � with exactly l − 1 nodes. The corresponding subalgebras
are either finite or affine. Now take all regular subalgebras of the algebras obtained. For this,
we either rely on the results of section 5 (in the case of affine algebras) or the results of [2] (in
the case of semisimple finite-dimensional algebras).
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